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A Functional Phase-Integral
Method and Applications
to the Laser Beam

Propagation in Random
Media

Pao-Liu Chow!
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The problem of propagation of a high-intensity light beam in a half-space
with random inhomogeneities is treated. An exact solution is constructed
through a functional integral representation. For a Gaussian random field,
the exact moments of solution are given explicitly. A functional phase-
integral method is developed to provide an asymptotic evaluation of the
moment integrals. The method is applied to two problems in a stochastic
laser beam propagation in random media with a homogeneous background
or with a focusing effect.
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1. INTRODUCTION

In an earlier paper,® hereafter referred to as I, we showed how the method of
function space (or functional) integration can be applied effectively to certain
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problems in wave propagation in an unbounded random medium. To justify
the smoothing perturbation technique and the direct interaction formalism
discussed in I, we treated rigorously a random parabolic equation,® where
error bounds for these approximations were obtained. Here we shall extend
an asymptotic method, known as the phase-integral method or the method of
stationary phase, presented in I to a half-space problem, and then apply it to
the propagation of a laser beam through a turbulent medium.

For this purpose, let us consider the time-harmonic wave propagation
of a focused beam of the high-intensity light in the half-space x > 0, where
the wave function u satisfies the reduced wave equation

Au(r, w) + k2n2(r, w)u(r, w) = 0, x>0 )

Here A denotes the Laplacian operator in the three-dimensional space
variable r; x is the first component of r; k is a complex wave number with a
positive imaginary part; and n(r, ) is the random refractive index, which is
a random function of r, with w in a sample space Q. We assume that the wave
function u represents the propagation of light due to a source emitted by a
transmitting laser at x = 0, so that

u(r)|x=0 = uo(p) = A(p) explikd(p)] 2

where 4 and ¢ are the prescribed amplitude and phase of the light beam at
x = 0, and p is the transverse variable of r = (x, p). Here and hereafter the
dependence of # on w is often omitted when there is no confusion.

The main objective of this paper is to determine the moments of the
solution to the random equation (1) subject to the boundary condition (2) and
a radiation condition at |r| = co, x > 0, which will not be written down. We
shall show that this problem can be solved exactly in terms of Wiener inte-
grals, which are then evaluated asymptotically for large k. When specified to
special cases, they yield, among others, some known results obtained by
different approaches.®# As a by-product, we found that the parabolic equa-
tion approximation used in high-frequency wave propagation corresponds to
a unidirectional asymptotic expansion, as shown in the appendix.

A systematic study on stochastic laser beam propagation was first made by
Schmeltzer,®® using the Rytov method or the logarithmic regular perturbation
method.®® De Wolf® tried to solve this problem by a combination of
geometric optics and selected summation of perturbation series. By assuming
n? to be the product of a random function of x and quadratic in p, the beam
problem was analyzed by Papanicolaou et al.™” after a parabolic equation
approximation.
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2. CONSTRUCTION OF EXACT SOLUTION

To solve the problem (1)—(2) exactly, we extend the random function
n(r, w) symmetrically with respect to x. Let A(r, w) be the extension defined as

Ar, w) = A(x, p, w) = n(x, p, ), x 2z
3)

0
= n(—x, p, w), x<0

Consider the full space, random Green’s function G(r,r’, ») which
satisfies the following equation:

AG(r, ¥, ) + K2A%(r, @)G(r, T, @) = 8(r — 1) @)

where &(r) stands for the Dirac delta function, and G is outgoing at [r] = co.
Then it is well known that, by a reflection principle (or method of image), the
solution to the half-space problem (1)~(2) can be represented in terms of the
full space Green’s function according to

u(r) = —2(8/x) f G(r, 'Yuolp’) dp’ ®)

in which u, is defined as in (2), and the integration is over the whole plane
x' = 0.

As shown in I, the radiation problem (4) can be transformed into an
initial value problem for a parabolic equation, and is thereby solved by a
functional integration:

G(r, ') = (ik)~* fo ) Ez{exp[ik L ) + 1) df} 20) = 0,

zZ(t) =1 — r’}z,b(t, r—r)dt (6)

where (¢, r) is the complex heat kernel defined to be the principal branch of
$(t, ) = (k/4mit)%2 exp(ikr?/4t) N

and E{-|z(0) = 0, z(z) = r} designates the conditional Wiener expectation
with the complex variance parameter 2ik~*, given that the paths z(7) start
fromz = 0 at + = 0 and reach z = r at ~ = ¢. Alternatively, we may view it
as a Gaussian integration over the set C(¢, r) of continuous functions z(+) on
[0, ¢] with z(0) = 0, z(¢) = r. Let G,[z] be a smooth functional on C(z, r).
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Then, for computational convenience, it is desirable to introduce the sym-
bolic expression, with z = dz/dr,

E{G,[z]|2(0) = 0, z(t) = r}i(z, 1)
- L Gl exp{%ik fo [4(7)]? dT} duz )

Now, in view of (5), (6), and (8), the exact random solution u can be
written in the form

2i 0 © ,
u(r, w) = % aLz J; fca,r_p') uo(P)

t
X exp{ikf A*(z(r) + p') dr
0

+ %‘ L t [#(")]? df} de’ dt dyz 9)

where u(p) is given by (2).
To compute the moments‘of u, we assume that

n(r, w) = a(r) + eu(r, w), xz20 (10)

where a(r) is the mean of n?; u(r, ) is a centered Gaussian random field; and
eisa parameter with 0 < e < 1. Let theangular bracket (- > denote the mathe-
matical expectation over Q. Then we have {(n*) = a, {u) = 0, and the co-
variance function of u is given by

ulr, w)u(r', w)) = R(x, r') gy
Noting (1), the extended random field /% has a mean
a(r) = a(x, e) = a(|x|, o) (12)
and the corresponding covariance function of g is
R(r,v) = R(x, p; X', ') = R(Ix], p; |X'], 07 (13)
Form = 1, 2, ..., n, let us define the mth moment of u as follows:
Fm(l', I, ..., rm) = <u1(l'1, w)uz(rZa w) e um(rrm w)> (14)

where
U =u for odd j
’ (15)

=1 for even j

and # means the complex conjugate of u.
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Similar to our results in I, all moments I',, can be obtained explicitly for the
Gaussian case. To this end, let us introduce the following abbreviations:

¢
Mj(tj) =J d(zj(T) + pjl) dT, ] = 13 2’ sy M (16)
0
iy sty A
Siltp ) = [ [ Ram) + o/, 2r) + o) dry dr (17
g YO
LI=12 .., m

Then, noting (9)-(17), it is not difficult to verify that,® form =1, 2, ...,

Pm(rla Fg, ooy l'm)
am
3x1 aXQ e 3xm

URERE () ) e e

X CXP{E LkMi(t) — % z BAS5(t5s 1)
i=1

i=1

= (=D 20 kaky - - k) ™!

m m tj

3D BASH )+ D ik | TP dv}
#1 k=1 o
I=1

K
3,
X (dey dt, dyz,)- - - (dpy Aty dwiy) (18)

where C; = C(t;,t; — p,), B; = k;e, and convention (15) applies to i, k, ug,
and .

For an arbitrary random field g, other than a Gaussian process, the exact
moments can be expressed in terms of its characteristic functional, as shown
in I. Also, we wish to point out that, for 4 Gaussian, there is a finite proba-
bility that »n* may become negative. However, the probability of the tail
distribution is hopefully small, at least, when e is small.

3. ASYMPTOTIC METHOD

In this section, we shall evaluate the moments I',, asymptotically as
k — oo, with $ held fixed. For m = 1, (18) reads

Ty (r) = 2ik~'(8/0x)J (r) (19)
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where J is the integral

J@) = f [ f uol®)

< oxp{i w0y + 4 [ it | - 30}

x dp' dt dyz (20)

In view of the definitions (16) and (17), the above integral J can be put in the
form

- f " u@)K U, v, p) de’ dt @1)

Here

K(t,r,9) = f Glz]

C{t,r—p’)
« exp(ik[o AP + dlz(7) + o]} df) dyz (22

and the functional G, is defined as

Gl = exp| 3" | [ RG) + 020 + ) |

0
Now we apply the phase-integral method (or the Laplace method, in
general) to (21) to obtain an asymptotic evaluation for large k. This will be
carried out in two steps. The first step consists in seeking the extremal paths

z*(7) over the class C(z, r — p’) that render the exponent in (22) stationary.
The variational problem for determining z* yields the Euler equation

1 d?z(7) . _
57 Vi(z(7)) = 0, 0<7<t 4

z(0) = 0, Z(t) =1 — ¢’

where V is the gradient operator.

Suppose that the boundary-value problem (24) has a unique solution
z*(7). Then, approximating the phase functional in (22) by a quadratic
functional about z*, we have, for large k,

K(t,r, ) ~ Ki(t,1,0) (25)
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and

Kl(t, r, P’)

_ exp(z'k [ GO + i) d,)
« L L, Gl ] exp[%ik f: () (VVaZ()]) - y(x) dr

+ 3k [ P | duy (26)

in which y = z — z*, and VV4, a second order tensor, denotes the second
gradient of 4. If there exist more than one solution to (24), then (25) becomes
the sum over all contributions due to the multiple solutions z*. When the
mean function a(r) is constant, (26) can be greatly simplified by evaluating
G.ly] at z* to give

Ki(t, v, 0) ~ Giz*lf(t, x — ') exp(ikat) @7
The second step requires expressing K; in the polar form
Kl(t: r, P/) = Al(ts T, P’) exp{ik¢l(t7 r, P,)} (28)

Then we use (28) and (22), which is in turn used in (21) to get

() ~ f ) " uo@) At r, ) explika(t,, o de’ dr (29)

Noting the expressions for u, and i given by (2) and (7), respectively, the
integral (29) is of the Laplace type. Hence the conventional Laplace method is
applicable here. To proceed, it is found convenient to first locate the station-
ary points along the ¢ axis for a fixed p’. They are the solutions ¢*(r, p') to the
following equation:

a¢l(t7 l', p’)/at = O (30)
For abbreviation, let us set
f explik, (1, 1, p')} dt = As(x, p') explikes(r, )} (31
[¢]
and
Aa(r, ) = A(p")A:(t*(r, p'), 1, o)A, @) (32)

Then, taking (2) and (27)-(32) into account and performing the #-integration,
(29) becomes

J(®) ~ L As(r, p7) exp{ik[$(p”) + ba(r, o)1} do’ (33)
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It follows from (19) that
o 0A (l‘, p') . , 395 (l‘, p')
~ 1 —3 ——2
I‘l(r) 2ik La { 2 + ikAs(r, e) 2

+ explikl$(p’) + 4a(r, o)1} dp’ (34)

Therefore the total phase of the above integral is ¢ + ¢,, which is
stationary when

V'd(p) + Viga(r, o) = 0 (35)

Here V' denotes the gradient operator in p’. Let p’ = p*(r) be a solution of
(35) and let, for j, I = 1, 2,

dr) = ﬁ [4(6) + o, ) vt (36)

Then, corresponding to each p*, the main contribution to the integral (36)
comes from the neighborhood of p* so that

Py(e) ~ 20k~ Ag(r, 0*(0)) explikd(e*®) + dalr, e*E)])
<[ exp{%ﬂc > dlm(r)p/pm'} de’
2

= Tdet Dy Ae(F 0¥ @) eXPUKIFe*(M) + dalr. p* @) B7)

i i

where D(r) is the diagonalized form of the symmetric matrix [d;(r)], and
det D stands for the determinant of D, which is assumed to be nonzero. The
singular points at which det D(r) vanishes correspond to the caustics for the
mean wave. This completes the asymptotic evaluation of the first moment I';.

For higher moments (m > 1) under the same limits, k->o0 with
B = ke held fixed, the computations turn out to be similar to the case for
m = 1. Since the m-iterated integral (20) with respect to ¢, p’, and z(r) are not
coupled through the mean field a(r), the asymptotic evaluation can be done
by treating the m-fold integrations independently. The stationary path
z,%*(7), 7 = 1,2, ..., m, corresponding to the jth integration is determined in
exactly the same way as the case for m = 1 indicated above.

However, the asymptotic evaluation becomes much more complicated
under the different limits when k — 0, k2 = O(1) [B = O(k)] or when
k— o0, B = k? (¢ = 1). Then the Euler equation (24) becomes a nonlinear
integrodifferential equation involving the covariance R (see Ref. 1) and there
exist no real solutions. This gives rise to a difficult mathematical question:
Can we deform the “path” of integration in function space from the class
C(t,r) to a certain class of complex functions containing the complex
stationary paths z*(+) and C(¢, r), similar to the finite~-dimensional case, and



Laser Beam Propagation in Random Media 101

how should it be done? Another puzzle. is this. For e = 1 we can apply the
asymptotic method to the random solution (9). The random Euler equation,
similar to the result of the geometric optics approximation, admits a real,
random solution (see Ref. 6). Since the asymptotic approximations executed
before and after taking the expectation of the random solution seem to yield
different results for moments, the question is which is physically correct and
why ? In view of the above difficulties, the asymptotic evaluation for a large k&
and a fixed B seems to be the only feasible one to facilitate the actual
computations.

4. APPLICATIONS TO LASER BEAM PROBLEMS

Let us apply the phase-integral method developed in Section 3 to two
problems in laser beam propagation in turbulent media. The first problem is
concerned with propagation of a laser light through a random medium with
a homogeneous background, such as the turbulent atmosphere,” and the
second problem pertains to its propagation in a focusing medium with
random inhomogeneities, such as a hot gas lens.®®®

4.1. Homogeneous Random Media

In this case, the mean a(r) is a constant which can be taken to be one, and
the covariance R(ry, ry) = R(r; — r,). The solution to the Euler equation is
simply

z¥(7) = (7/t)(x — ') (3%)
In view of (38) and (23), (27) becomes

Ki(t,r,0) ~ exp{zkt - -—ﬁzf j [ - r—op )] dry de} 39

By definition (28), we see that ¢* = ¢z, and (30) implies that
t* = 4lr — ¢'| (40)
Upon using (40) in (29) and integrating it out in #, the result (30) reduces to

I]_(l') ~ lk A(Pl)Al*(ra P ) exp{lklr47:lrp l _P'_llk¢(p )} d ' (41)

where, with #* given by (40),
tt
A5, p") = exp{—— Bzf f [Tl 2 — ] dry d-r2} (42)
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According to (19), we get

ik x
B0 T, T

1 16 * ’ !
y [1 - E = + = = In 4, (r,p)]A(P)

x As*(r, o) exp{ik[$(p”) + [r — o'} dp’ (43)
Similarly, the second and higher moments can be computed. For brevity,

we give only the following results for the second and fourth moments, letting
¥ =45 — e/

kik X1X 1
Ty, r ~1_2ff 12 ,[1—, .
o(F1, T2) Rg YRg —P1Hr2—92| lkl,f1—91|

1 1
+ — In A,*(ry, 1o, £1', 1 4+ s
lkl arl 2*(ry, T, 1’ P2 )][ lkzll'z — le

1
lk2 a 2 ln A2 (rl, l'2, Pl ) 92 )]

X A(PII)A(92’)A2*(1.1’ Ia, plla 92,)
x exp{iki[$(p1") + [r1 — p1|]

— iko[d(ps) + |12 — 2|1} dey” dp.’ (44)

and

~ kX
]._‘4(1'1, aeoy l'4) 167T Lz Lz 1 {J |r] — pJ l

1y
[1 e

i' a ’ ' ’
+ FJJ a_r] ln A4*(r15 seey l'4, pl 3 crey 94 ):|A(PJ)

X A4*(r1) ey Ty Plla cees 94’)}

X exp{z Lkilp(e) + |r; — Pj”} dp, --dps’  (45)

i=1
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where our convention (15) is applied to i,, k;, and B;, and for m = 2, 4

Am*(rla . rmn Pl EERERY) pm

on{ B3 [ -]

1 < " e D 1 T !

T3 z leglf f R[% (r; —p/) — t—i(rz - P )] dry dTQ} (46)

L o Yo 7 l

=1

We note that, when A4;* = 1, (43) reduces to the case of propagation in a
homogeneous medium.*® The effects of random fluctuations on the moments
at high frequencies are completely described by the functions 4,* appearing
in Eq. (46). To simplify the results further, let us specify the aperture field as

follows:

40.0) = doexps (1 = omz)et} (@)

which is the profile of a Gaussian beam with a maximum amplitude A4,, the
initial effective beam radius e,, and the radius of curvature of the focused
wave front R,. By a comparison with (2), we get

A(p) = Ao exp(p?/2x,?) (48)
$(p) = p*/2R, (49)

In view of (43), ¢:(p) = |r — ¢[, and noting (39), Eq. (33) for the stationary
point p* reads

(I/R)p* — [r — p*| (e — p*) =0 (50)
which can be solved for p* approximately for a large x,
¥ = (Ry/x)p + O(1/x%), x> Ry, x> |p| &)
Corresponding to (51), it can be shown easily that
DY2(r) = (1% + 1) + o(ig) (52)
0 x

When (51) and (52) are used in (37) with the terms of O(1/x?) neglected, we
obtain

L)) ~ @ﬁ——m {1 - (ik)-l[z(lr—) - Jle :m R(7) df]}
X exp{zk{(r) + = ( ik — _0)3%2

L(r)
— k2 f [2¢(r) — ]R(7) dT} (33)
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where, for simplicity, the random refractive index is assumed to be isotropic
and ¢ is defined as
{r) = |r — (Ro/x)p] (54)
In a similar fashion, the second moment (44) can be simplified to give

2

Ty, 1) ~ R {1‘] [1 — (i)t

x (@ + k22 mz R(() — 27) dT)]
L1
t3

2, 92 R(O) xl
3k z(rl)} L o Rty

x exp{llk ir) + 5 (”k’ - _)(%)2

L(ry
— e [ 22te) - 7IRE) df} (55)

To compute the intensity I, we let r; = ¥, = r in (55) and assume that the
wave number k is real to get

R02x4 1 1 k22 iry ) 2
I(®) = Ty(r,r) ~ sz(r){l tE [Z(T) -3 R(7) dr] }

0

2 22 L(r)
x exP{_& (%) -5 [ e - R df} (56)

o1} o

Far along the beam axis, p = 0 and x — o0, (53) and (56) yield the following
simple expressions:

Ty(x) ~ R0[1 _ ke Lw R(7) df]

X exp{%kzezf TR(7) dv + ikx — 3k%&x f R(7) dr} (57
0 0

1(x) ~ Roz{l + k254[ L " R() df]z}

X exp{%kzezf TR(7) dr — kzezxf R(7) d’r} (58)
° o

We see clearly that both the mean field and the intensity decay exponentially
with a rate proportional to _f: R(7) dr. In fact we have I(x) = T (x)T;(x).
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Therefore, along the beam axis, fluctuations about the mean value are negli-
gible. The fourth moment I', can also be computed. The physical significance
of our results and comparison with results obtained by other workers will be
discussed elsewhere. For example, one can show that, by a Fresnel integral
and other approximations, our general results (54) and (56) yield the results
obtained in Refs. 3 and 4 by different methods.

4.2. Lens-Like Random Media

For a focusing gas lens with random inhomogeneities, the mean field
a(r) is assumed to be of the form

a(®) =1 — 4q:%p:® — 1g2%ps° (59)
where p = (p1, pa); 91, go are some positive constants; and the correlation
function R is assumed to be homogeneous. Corresponding to (59), the Euler
equation (24) takes the form

d2
d 2
where q = (0, ¢,2, ¢5?).
The solutions to (60) are given by

+q-z=0, 7z(0) = 0, Z{(t)y=r — ¢’ (60)

T sin g,
f— * J
T = oX Zj+1 = sin g,

(py—p J=12 (61)

Upon using (59) and (61) in (26) and evaluating G, at z*, we obtain

. i
Ktrne) ~ 61| en{§ [ D
(¢}

ci,0)
ik t 2
- zfo 2, 473a(?) dr} dyy
i=1

o
X exp{lkt + ilfx— + — ik

t

3 4
f 2 0 o oy — b/ dr} ©2)

where

Glz*) = exp{ ~3

2 . .
- 7'2 S g;7; — SING;7y o
f f { X, jzl Sin qjt (Pi Py )}

x dry de} (63)
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Letting
= (k/4i)q; (64)

the Wiener integral of the exponential quadratic functional in (62) can be
evaluated * and then simplified to give

2
Ki(t,1, ") ~ Glz*)(4mik~1t%) =12 [ | [sin(A21)] =112
y=1

2 2
X exp{ikt + %z’ki— + i—ik Z gi(cot g;t)(p; — p/)"’} (65)
j=1

where the principal branch of each root function is taken. By a comparison
with (28), we get

x2 1 2
#ltr p) = 1+ 77+ 7 2, afcotgi)es = o)) (66)
and
o S :
B DY ACI N OEYO (67)

It can be shown that, when

2
tz_%z *(pi — £/ >0
the transcendental equation (67) has infinitely many positive solutions
t* = £, tg, ..., by, ..., as functions of r and p’. However, the explicit deter-
mination of ¢* in a closed form becomes impossible. Therefore we shall not
carry out the asymptotic evaluation for integrals with respect to ¢ and p’.
By virtue of (65), (25), and (21), Eq. (19) yields the following result:

219 A(p')Gy[z*]
~ 1 ——
Ly(r) ~ 2ik P Lz L ik -t 2 [2_, [siIn(AF 22

x exp{ik[¢(p')

x_z '}4‘ Z gs(cot g;t)p; — P]',)z]} de’ dt (68)
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For higher moments, we shall not write down their lengthy expressions, except
the second moment I'y, which is found to be

1 o2 A % o %
Uo(ry, ry) ~ Zk—ﬂmfh LZ fo fo Gi,l2:*, 75¥]

2 v
Ale!)
X I,Jl PP[Sin(AI2E) sin(Ay25)] 2

1

x2

X exp{ik(— 1)’”[¢(pz’) + 4+ G

12 ,
+3 Z gicot g;t)(py; — Pu‘)z]}
=1
x dp,' dp; diy dt, (69)
where k is real and the function

thtz[zl*y z,*]

1., Zorhrh fpo— gy
= expy —3 B ;1 R

2 . .
Sin g;7; — SIN ¢,;7y e
;Z sin gt (Pl:‘ - sz) ) dr 1 dr 2

1
t1 pia
T T
ZJ f R(—1 X1 — = Xy,
0 Jo h Iy

2. sin g7y , 2. sin g,y o
j; m (p1; — P13)* — ,Zl m (p2; — p2;) ) dry de}} (70)
Although we have been able to obtain the moments by the present
approach, the results such as (68) and (69) are too complicated to admit
physical interpretation. The effects of random fluctuations on the beam
propagation are contained in the functions G; and G, , given, respectively, by
(63) and (70), and the like for higher moments. Since the correlation function
R is positive definite, these functions give rise to the decay factors for the
moments. It is of great physical interest to simplify the results further to
reveal how the moments are actually modulated by random inhomogeneities,
yet without destroying the validity of this approximation. This is a nontrivial
problem which, we hope, will challenge some workers in this field.

APPENDIX: ON THE PARABOLIC EQUATION
APPROXIMATION

The parabolic equation approximation to the random reduced wave
equation (1) is a deterministic approximation.®-'? We wish to show that it
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corresponds to a unidirectional asymptotic expansion of the functional
integral representation (9) to the half-space problem (1)—(2). To this end, we
substitute (10), where we set ¢ = 1, into (9) to get

a w
u(r) = 2ik‘1—f f f f uo(p")
® 0% Jp, Jo Jowm Jote-en ’

i
+ exp{ikt + ikef w(zy(7), 2,(7) + ¢') dr
¢

ik (* L ik (. ,
+ G [ P + 5[ P drpde’ dedyz, dy, (A)
0 [+

where we have split the integral with respect to z(7) into the longitudinal
component z;(r) and the transverse component z,(r). Again, we keep
B = ke fixed and carry out a stationary phase evaluation of the integral (A.1)
with respect to z;(7) only. The stationary path is easily found to be z,* =
(7/£)x; when used in (A.1), we obtain

2
u(r) ~ 2ik~1 f f (477'14];(913)1/2 eXp{ik)th + ikt}

x (J exp{ikej p(tz x, z,(7) + p’) dr
C(t,e—e") 0

+ % fo e dT} dwzl) do’ dt (A2)

In (A.2), the phase in the t-integration is [(x?/4¢) + ¢], which is stationary
when ¢* = x/2. With this stationary ¥, (A.2) can be asymptotically reduced
to

) ~ 0@ [ [ )

Rg Y C(t,e~p)

x/2
X exp{ikx + ikef w27, z,(7) + p") dr

4]
x/2 ’
+ Lk f [2,(7)]? df} do’ dyz, (A3)
[s]

Letting ¢ = 27 in (A.3), it can be rewritten as

u(r) ~ e*v(r) + (k) ov(r)/ox] (A.4)
where

o(r) = f f (o) exp{%ike f w0, 2,(0) + ¢') do
Rg Y C(t,p—p") 0

+ ik f " o) do} do’ dyz, (A.5)
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In view of (A.5), v satisfies the parabolic equation

ovjox = (i[2k)(Ar + po
and
V]x=0 = uo(p) (A.6)

Since the parabolic equation approximation is given by (A.4) with the term
(tk)~* év/ox neglected on the right-hand side, our result (A.4) constitutes an
improved parabolic approximation, though the correction term may be
small for large k.
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